Transplantation of limb tissue allografts would greatly expand the realm of reconstructive surgery. However, the toxicity of chronic immunosuppression has adversely tilted the risk-benefit balance for clinical transplant. In this study, a procedure was sought to achieve host tolerance to limb tissue allografts through matching of the major histocompatibility complex (MHC) antigens between donor and host swine using only a 12-day course of cyclosporine. Massachusetts General Hospital (MGH) miniature swine were used as a large animal model with defined MHC, and musculoskeletal grafts from the donor hind limb were transplanted heterotopically to the recipient femoral vessels. Allografts from MHC-mismatched donors treated with cyclosporine (n = 4) were rejected in less than 6 weeks by gross inspection and histologic sections. Allografts from MHC-matched, minor antigen mismatched donors not treated with cyclosporine (n = 4) were rejected between 9 and 12 weeks. Allografts from similarly matched donors treated with 12 days of cyclosporine (n = 7) showed no evidence of rejection until sacrifice between 25 and 47 weeks. Thus allograft tolerance was achieved between MHC-matched swine using a limited course of cyclosporine. Demonstration of limb tissue allograft survival in a large animal model without long-term immunosuppression represents an important step toward clinical transplantation.