A chimeric 3-isopropylmalate dehydrogenase, named 2T2M6T, made of parts from an extreme thermophile, Thermus thermophilus, and a mesophile, Bacillus subtilis, was found to be considerably more labile than the T. thermophilus wild-type isopropylmalate dehydrogenase. In order to identify the molecular basis of the thermal stability of the T. thermophilus isopropylmalate dehydrogenase, 11 amino acid residues in the mesophilic portion of the chimera were substituted by the corresponding residues of the T. thermophilus enzyme, and the effects of the side chain substitutions were analyzed by comparing the reaction rate of irreversible heat denaturation and catalytic parameters of the mutant chimeras with those of the original chimera, 2T2M6T. Four single-site mutants were successfully stabilized without any loss of the catalytic function. All these four sites are located in loop regions of the enzyme. Our results strongly suggest the importance of these loop structures to the extreme stability of the T. thermophilus isopropylmalate dehydrogenase.