Previously we defined a Thy1(dull) bone marrow-derived cell population that regulated fate decisions by immature B cells after Ag receptor signaling. The microenvironmental signals provided by this cell population were shown to redirect the B cell Ag receptor -induced apoptotic response of immature B cells toward continued recombination-activating gene (RAG) expression and secondary light chain recombination (receptor editing). Neither the identity of the cell responsible for this activity nor its role in immature B cell development in vivo were addressed by these previous studies. Here we show that this protective microenvironmental niche is defined by the presence of a novel Thy1(dull), DX5(pos) cell that can be found in close association with immature B cells in vivo. Depletion of this cell eliminates the anti-apoptotic effect of bone marrow in vitro and leads to a significant decrease in the number and frequency of bone marrow immature B cells in vivo. We propose that, just as the bone marrow environment is essential for the survival and progression of pro-B and pre-B cells through their respective developmental checkpoints, this cellular niche regulates the progression of immature stage B cells through negative selection.