The process of interpreting the results of clinical studies and translating them into clinical practice is being debated. Here we examine the role of p values and confidence intervals in clinical decision-making, and draw attention to confusion in their interpretation. To improve result reporting, we propose the use of confidence levels and plotting of clinical significance curves and risk-benefit contours. These curves and contours provide degrees of probability of both the potential benefit of treatment and the detriment due to toxicity. Additionally, they provide clinicians with a mechanism of translating the results of studies into treatment for individual patients, thus improving the clinical decision-making process. We illustrate the application of these curves and contours by reference to published studies. Confidence levels, clinical significance curves, and risk-benefit contours can be easily calculated with a hand calculator or standard statistical packages. We advocate their incorporation into the published results of clinical studies.