Four new D-secopaclitaxel analogues were synthesized from paclitaxel. The key step of the synthesis involved the opening of the D-ring by Jones oxidation. Two of the compounds had been predicted to be nearly as active as paclitaxel in a minireceptor model of the binding site on tubulin, but all were biologically inactive in an in vitro cytotoxic assay and a tubulin assembly assay. The biological results identify a weakness in our predictive minireceptor model and suggest a corrective remedy in which additional amino acids are needed to accommodate ligand-protein steric effects around the oxetane ring. These changes to the model lead to correct predictions of the bioactivity. Conformational analysis and dynamics simulations of the compounds showed that the 4-acetyl substituent is as important as the oxetane in determining the A ring conformation.