Compressive/tensile stresses and lignified cells as resistance components in joints between cladodes of Opuntia laevis (Cactaceae): responses to applied stresses

Environ Exp Bot. 2001 Aug;46(1):47-53. doi: 10.1016/s0098-8472(01)00085-5.

Abstract

Cactaceae are a diverse group of plants with a wide variety of morphologies and reproductive strategies. Many species have segmented stems in which terminal cladodes may be separated from main stem cladodes with varying amounts of resistance. Previous results demonstrated that lignified xylem cells in tensile portions of stem joints provide the main resistance to separation of cladodes within cactus plants. The purpose of the present study was to determine if stem joints of Opuntia laevis would produce additional lignified xylem cells in response to additional externally applied stresses. Normal average stress levels, which accompany the addition of a new cladode, were applied to 12 plants. In contrast, double the average stress levels were applied to 13 other plants. After exposure to the two stress regimens for 6 months, the amount and location of lignified xylem cells in joint segments were similar for both stress treatments. So, although the results support the hypothesis that lignified xylem cells act as the main resistance to stress at joints of cladodes, doubling the normal amount of applied stress was insufficient to alter the amount or location of lignified xylem cells in stem joints. These results indicate that normal amounts of lignified xylem cells can resist up to two times the normal amount of stress for 6 months without producing additional lignified xylem cells.