Microglia cells are closely associated with compact amyloid plaques in Alzheimer's disease (AD) brains. Although activated microglia seem to play a central role in the pathogenesis of AD, mechanisms of microglial activation by beta-amyloid as well as the nature of interaction between amyloid and microglia remain poorly understood. We previously reported a close morphological association between activated microglia and congophilic amyloid plaques in the brains of APP23 transgenic mice at both the light and electron microscopic levels [25]. In the present study, we have further examined the structural relationship between microglia and amyloid deposits by using postembedding immunogold labeling, serial ultrathin sectioning, and 3-dimensional reconstruction. Although bundles of immunogold-labeled amyloid fibrils were completely engulfed by microglial cytoplasm on single sections, serial ultrathin sectioning and three-dimensional reconstruction revealed that these amyloid fibrils are connected to extracellular amyloid deposits. These data demonstrate that extracellular amyloid fibrils form a myriad of finger-like channels with the widely branched microglial cytoplasm. We conclude that in APP23 mice a role of microglia in amyloid phagocytosis and intracellular production of amyloid is unlikely.