In this work, the genes for cytochrome aa3 oxidase and the cytochrome bc1 complex in the gram-positive soil bacterium Corynebacterium glutamicum were identified. The monocistronic ctaD gene encoded a 65-kDa protein with all features typical for subunit I of cytochrome aa3 oxidases. A ctaD deletion mutant lacked the characteristic 600 nm peak in redox difference spectra, and growth in glucose minimal medium was strongly impaired. The genes encoding subunit III of cytochrome aa3 (ctaE) and the three characteristic subunits of the cytochrome bc1 complex (qcrABC) were clustered in the order ctaE-qcrCAB. Analysis of the deduced primary structures revealed a number of unusual features: (1) cytochrome c1 (QcrC, 30 kDa) contained two Cys-X-X-Cys-His motifs for covalent heme attachment, indicating that it is a diheme c-type cytochrome; (2) the 'Rieske' iron-sulphur protein (QcrA, 45 kDa) contained three putative transmembrane helices in the N-terminal region rather than only one; and (3) cytochrome b (QcrB, 60 kDa) contained, in addition to the conserved part with eight transmembrane helices, a C-terminal extension of about 120 amino acids, which presumably is located in the cytoplasm. Staining of C. glutamicum proteins for covalently bound heme indicated the presence of a single, membrane-bound c-type cytochrome with an apparent molecular mass of about 31 kDa. Since this protein was missing in a qcrCAB deletion mutant, it most likely corresponds to cytochrome c1. Similar to the deltactaD mutant, the deltaqcrCAB mutant showed strongly impaired growth in glucose minimal medium, which indicates that the bc1-aa3 pathway is the main route of respiration under these conditions.