Both beta1 and beta2 auxiliary subunits of the BK-type K(+) channel family profoundly regulate the apparent Ca(2)+ sensitivity of BK-type Ca(2)+-activated K(+) channels. Each produces a pronounced leftward shift in the voltage of half-activation (V(0.5)) at a given Ca(2)+ concentration, particularly at Ca(2)+ above 1 microM. In contrast, the rapidly inactivating beta3b auxiliary produces a leftward shift in activation at Ca(2)+ below 1 microM. In the companion work (Lingle, C.J., X.-H. Zeng, J.-P. Ding, and X.-M. Xia. 2001. J. Gen. Physiol. 117:583-605, this issue), we have shown that some of the apparent beta3b-mediated shift in activation at low Ca(2)+ arises from rapid unblocking of inactivated channels, unlike the actions of the beta1 and beta2 subunits. Here, we compare effects of the beta3b subunit that arise from inactivation, per se, versus those that may arise from other functional effects of the subunit. In particular, we examine gating properties of the beta3b subunit and compare it to beta3b constructs lacking either the NH(2)- or COOH terminus or both. The results demonstrate that, although the NH(2) terminus appears to be the primary determinant of the beta3b-mediated shift in V(0.5) at low Ca(2)+, removal of the NH(2) terminus reveals two other interesting aspects of the action of the beta3b subunit. First, the conductance-voltage curves for activation of channels containing the beta3b subunit are best described by a double Boltzmann shape, which is proposed to arise from two independent voltage-dependent activation steps. Second, the presence of the beta3b subunit results in channels that exhibit an anomalous instantaneous outward current rectification that is correlated with a voltage dependence in the time-averaged single-channel current. The two effects appear to be unrelated, but indicative of the variety of ways that interactions between beta and alpha subunits can affect BK channel function. The COOH terminus of the beta3b subunit produces no discernible functional effects.