We have previously shown that the molecular chaperone heat shock protein 90 (Hsp90) is required to ensure proper centrosome function in Drosophila and vertebrate cells. This observation led to the hypothesis that this chaperone could be required for the stability of one or more centrosomal proteins. We have found that one of these is Polo, a protein kinase known to regulate several aspects of cell division including centrosome maturation and function. Inhibition of Hsp90 results in the inactivation of Polo kinase activity. It also leads to a loss in the ability of cytoplasmic extracts to complement the failure of salt-stripped preparations of centrosomes to nucleate microtubules. This effect can be rescued upon addition of active recombinant POLO: We also show that Polo and Hsp90 are part of a complex and conclude that stabilization of Polo is one of the mechanisms by which Hsp90 contributes to the maintenance of functional centrosomes.