The vasopressin-activated calcium-mobilizing (VACM-1) protein is a unique arginine vasopressin (AVP) receptor which shares sequence homology with the cullins, genes involved in the regulation of cell cycle transitions. Unlike either cullins or AVP receptors, however, VACM-1 is expressed exclusively in the vascular endothelial cells and in the renal collecting tubule cells. In order to test the hypothesis that the expression of VACM-1 might be correlated with the cell cycle, and to establish an endothelial cell model for the VACM-1 receptor, we examined VACM-1 expression in rat adrenal medulla endothelial cells (RAMEC). Northern and Western blot analyses of mRNA and protein from RAMEC identified presence of 6.4 kb mRNA and a Mr 81 kDa protein, respectively. Immunostaining of RAMEC with anti-VACM-1 antibodies and Western blot analyses indicated that in RAMEC, VACM-1 protein expression is dependent on the cell cycle. VACM-1 protein virtually disappears during the S phase and localizes to the cytosol during cell division and to the cell membrane at the completion of cytokinesis. Furthermore, pretreatment of RAMEC with anti-VACM-1 specific antibodies increased basal levels of Ca2+and attenuated the AVP-dependent increase in cytosolic Ca2+. In summary, these results indicate that VACM-1 protein expression in RAMEC membrane is linked to the cell cycle, and consequently, VACM-1 may be involved in the regulation of cell division.