1. The regulation of L-type Ca(2+) current (I(Ca)) by the two nitric oxide (NO) donors sodium nitroprusside (SNP, 1 microM to 1 mM) and (+/-)-S-nitroso-N-acetylpenicillamine (SNAP, 3 or 10 microM) was investigated in frog ventricular myocytes using double voltage clamp and double-barrelled microperfusion techniques. 2. SNP and SNAP depressed the isoprenaline (ISO, 10-100 nM)- or forskolin (FSK, 1 microM)-mediated stimulation of I(Ca) via cGMP activation of the cGMP-stimulated phosphodiesterase (PDE2). Complete inhibition of the ISO (100 nM) response was observed at 1 mM SNP. 3. When SNP was applied locally, i.e. to one-half of the cell, and ISO to the whole cell, the response of I(Ca) to ISO was strongly antagonized in the cell half exposed to SNP (up to 100 % inhibition at 1 mM SNP) but a relatively small depression was observed in the other half of the cell (only 20 % inhibition at 1 mM SNP). 4. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO, 1 mM) reversed the local effect of SNAP (3 microM) on FSK-stimulated I(Ca) when applied to the same side as the NO donor, but had no effect when applied to the other side of the cell. 5. A local application of erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA, 30 microM), a selective inhibitor of PDE2, fully reversed the local effect of SNP (100 microM) or SNAP (10 microM) on I(Ca) but had no effect on the distant response. 6. When EHNA was applied on the distant side, with SNP (1 mM) and ISO (100 nM) applied locally, the distant effect of SNP was fully reversed. 7. Our results demonstrate that in frog ventricular myocytes stimulation of guanylyl cyclase by NO leads to a strong local depletion of cAMP near the L-type Ca(2+) channels due to activation of PDE2, but only to a modest reduction of cAMP in the rest of the cell. This may be explained by the existence of a tight microdomain between L-type Ca(2+) channels and PDE2.