Aim: A comparative study of the images obtained with a dual-head coincidence gamma camera with thick NaI crystals (19 mm), a dedicated PET camera with BGO crystals and a conventional gamma camera with thin NaI crystals (9.5 mm) was conducted to clarify the clinical feasibility of a dual-head coincidence gamma camera with thick NaI crystals.
Methods: FDG images of 27 patients with malignant tumors were obtained by means of a dual-head coincidence gamma camera with thick NaI crystal and a dedicated PET camera with BGO crystals. The images of bone scintigraphy in 10 cancer patients obtained with the dual-head coincidence gamma camera were compared with those taken by a conventional dual-head gamma camera with thin NaI crystals.
Results: Patient-basis sensitivity in 27 patients with neoplasms and lesion-basis sensitivity of the dual-head coincidence gamma camera and the dedicated PET camera were 74.1% and 85.2% (n.s.), 66.7% and 72.2% (n.s.), respectively. The tumor to background FDG uptake ratio derived from the coincidence gamma camera was significantly lower than that derived from the dedicated PET camera (mean +/- s.d.; 3.48 +/- 3.77 vs. 8.12 +/- 8.92, p < 0.0001), but the tumor to background FDG uptake ratio obtained with both methods correlated well (r = 0.84, p < 0.001). Similar whole body bone scans were obtained with the dual-head coincidence gamma camera and the conventional dual-head gamma camera in all 10 patients.
Conclusion: These results suggest that the dual-head coincidence gamma camera with thick NaI crystals has potentially high clinical applicability for community hospitals.