Reproductive pair correlations and the clustering of organisms

Nature. 2001 Jul 19;412(6844):328-31. doi: 10.1038/35085561.

Abstract

Clustering of organisms can be a consequence of social behaviour, or of the response of individuals to chemical and physical cues. Environmental variability can also cause clustering: for example, marine turbulence transports plankton and produces chlorophyll concentration patterns in the upper ocean. Even in a homogeneous environment, nonlinear interactions between species can result in spontaneous pattern formation. Here we show that a population of independent, random-walking organisms ('brownian bugs'), reproducing by binary division and dying at constant rates, spontaneously aggregates. Using an individual-based model, we show that clusters form out of spatially homogeneous initial conditions without environmental variability, predator-prey interactions, kinesis or taxis. The clustering mechanism is reproductively driven-birth must always be adjacent to a living organism. This clustering can overwhelm diffusion and create non-poissonian correlations between pairs (parent and offspring) or organisms, leading to the emergence of patterns.

MeSH terms

  • Models, Biological*
  • Monte Carlo Method
  • Population Dynamics
  • Reproduction