The analytical methods for characterizing DNA sequence-dependent thermodynamic stability have been reviewed. A set of n-n sequence stability parameters is presented. Examples in which these values are used to calculate the thermodynamic stability of short duplex DNA oligomers are presented. The problem of determining sets of isothermal sequences is addressed by representing DNA sequences as graphs. Representing DNA sequences by a graph descriptor with special mathematical properties minimizes the computational difficulty of determining the number of DNA sequences with identical predicted thermodynamic stability. This is achieved by replacement of a whole set of sequences by a single representative. Applications of this concept were demonstrated for sequences assembled from individual bases and sequences assembled from oligomeric blocks.