The method described here predicts the trajectories of articulatory movements for continuous speech by using a kinematic triphone model and the minimum-acceleration model. The kinematic triphone model, which is constructed from articulatory data obtained from experiments using an electro-magnetic articulographic system, is characterized by three kinematic features of a triphone and by the intervals between two successive phonemes in the triphone. After a kinematic feature of a phoneme in a given sentence is extracted, the minimum-acceleration trajectory that coincides with the extremum of the time integral of the squared magnitude of the articulator acceleration is formulated. The calculation of the minimum acceleration requires only linear computation. The method predicts both the qualitative features and the quantitative details of experimentally observed articulation.