After 10 wk of feeding an experimental diet enriched with (n-3) polyunsaturated fatty acids (PUFA), i.e., eicosapentaenoic acid [EPA, 20:5(n-3)] and [DHA, 22:6(n-3)] (EPAX), blood pressure in spontaneously hypertensive rats (SHR), but not in normotensive Wistar-Kyoto (WKY) rats was reduced relative to rats fed an unsupplemented control diet. Concanavalin A-stimulated T-cell proliferation was diminished in both strains of rats fed the PUFA/EPAX diet. The experimental diet lowered secretion of interleukin-2 in SHR, but not in WKY rats compared with rats fed the control diet. To determine whether there was a defect in calcium homeostasis in T cells during hypertension, we employed the following agents: caffeine, which recruits calcium from the cytosolic Ca(2+)-induced Ca(2+)-release pool; ionomycin, which at low concentrations opens calcium channels; and thapsigargin (TG), which mobilizes [Ca(2+)]i from the endoplasmic reticulum (ER) pool. Caffeine-induced increases in [Ca(2+)]i were not modified by the PUFA/EPAX diet. The ionomycin-induced increases in [Ca(2+)]i in T cells from SHR were greater than in those from WKY rats; consumption of the PUFA/EPAX diet did not modify Ca(2+) influx in cells of either strain. The TG-induced increases in [Ca(2+)]i in T cells from SHR were greater than those in cells from WKY rats. Interestingly, consumption of the experimental diet reduced TG-evoked increases in [Ca(2+)]i in T cells from SHR and increased those in T cells from WKY rats, indicating that the PUFA/EPAX diet could reverse the calcium mobilization from the ER pool in T cells. These results suggest that (n-3) PUFA exert antihypertensive effects and modulate T-cell calcium signaling during hypertension in rats.