A conductivity detector was coupled to poly(dimethylsiloxane)-glass capillary electrophoresis microchips to monitor microfluidic flow. Electroosmotic flow was investigated with both conductivity detection (CD) and the current monitoring method. No significant variation was observed between these methods, but CD showed a lower relative standard deviation. Gradient mixing experiments were employed to investigate the relationship between the electrolyte conductivity and the electrolyte concentration. A good linear response of conductivity to concentration was obtained for solutions whose difference in concentrations were less than 27 mM. The new system holds great promise for precision mixing in microfluidic devices using electrically driven flows.