This study explores how cued shifts of visual attention and rapid encoding of visual information relate to limited-capacity processing mechanisms. Three experiments were conducted placing a partial-report task within a dual-task paradigm. Experiments 1 and 2 involved a simple speeded visual discrimination (Task 1) and then an unspeeded partial-report task (Task 2). Generally, Task 2 accuracy declined as the temporal overlap between the two tasks increased. In addition, in Experiment 1, varying the number of items in the partial-report display had an effect on performance regardless of overlap. In contrast, in Experiment 2, varying the type of probe had an effect only at long task overlap. The generality of the interference effect was tested in Experiment 3 using an auditory discrimination as Task 1. Again, Task 2 accuracy declined as the temporal overlap between the two tasks increased. In all cases, the observed interference had the properties of a processing bottleneck. It is argued that encoding information into memory and response selection for the first task both require general-purpose processing. The results are discussed in terms of the functional relationship between attention and memory.