Multiphoton fluorescence microscopy

Methods. 2001 Sep;25(1):103-10. doi: 10.1006/meth.2001.1219.

Abstract

Multiphoton fluorescence microscopy has now become a relatively common tool among biophysicists and biologists. The intrinsic sectioning achievable by multiphoton excitation provides a simple means to excite a small volume inside cells and tissues. Multiphoton microscopes have a simplified optical path in the emission side due to the lack of an emission pinhole, which is necessary with normal confocal microscopes. This article illustrates examples in which this advantage in the simplified optics is exploited to achieve a new type of measurements. First, dual-emission wavelength measurements are used to identify regions of different phase domains in giant vesicles and to perform fluctuation experiments at specific locations in the membrane. Second, we show how dual-wavelength measurements are used in conjunction with scanning fluctuation analysis to measure the changes in the geometry of the domains and the incipient formation of gel domains when the temperature of the giant vesicles is gradually lowered.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Fluorescence Polarization
  • Fluorescent Dyes
  • Membrane Fluidity
  • Microscopy, Confocal / instrumentation
  • Microscopy, Confocal / methods*
  • Microscopy, Fluorescence / instrumentation
  • Microscopy, Fluorescence / methods*
  • Photons*
  • Quantum Theory
  • Spectrometry, Fluorescence / instrumentation
  • Spectrometry, Fluorescence / methods*

Substances

  • Fluorescent Dyes