Tumor development and aging can each alter immune competence. The present study aimed to determine the impact of Lewis lung carcinoma (LLC) presence on immune parameters of middle-aged (averaging 6.5 months) versus aged (averaging 21.3 months) mice. An age-associated decline in the CD4+ cell frequency was seen in freshly isolated spleen and lymph node cells, as well as in cultures stimulated with immobilized anti-CD3. This decline was not further exacerbated by tumor presence. What was prominently inhibited by tumor was the capacity of either splenic or lymph node CD4+ cells to become stimulated to express IFN-gamma. Spleen and lymph node cultures from aged tumor-bearing mice had the lowest frequency of CD4+IFN-gamma+ cells and the least amount of secreted IFN-gamma. CD8+ cells were not affected by aging, but tumor presence reduced the induction of CD8+IFN-gamma+ cells in lymph node cultures. We previously showed that LLC growth stimulates myelopoiesis, as seen by splenomegaly and the mobilization of immune inhibitory CD34+ progenitor cells. Tumor presence in middle-aged mice reduced spleen cell blastogenesis, which was mediated by CD34+ cells. Aged mice had reduced blastogenesis, and this was further reduced by presence of tumor. However, neither the age-associated immune dysfunction nor the tumor-induced immune suppression in aged mice was due to CD34+ progenitor cells. These studies show how tumor presence can further compromise the immune dysfunction that accompanies aging. In addition, they show that aging impacts on the mechanisms by which tumors inhibit T-cell capabilities, with myelopoiesis-associated CD34+ cells mediating the immune depression of middle-aged tumor-bearers and an independent mechanism being responsible for the immune depression in aged tumor-bearing mice.