We evaluated the role of the tumor environment in the regulation of apoptosis of tumor-infiltrating neutrophils, the number of which correlates negatively with outcome, in patients with adenocarcinoma of the bronchioloalveolar (BAC) subtype. We examined three different parameters of apoptosis, namely morphological aspect, annexin-V expression, and DNA fragmentation. Bronchoalveolar lavage fluid (BALF) supernatants from patients with BAC significantly inhibited the 24-hour spontaneous apoptosis of normal peripheral blood neutrophils in vitro compared to BALF supernatants from control patients (64 +/- 4% versus 90 +/- 2% measured by annexin-V flow cytometry, P = 0.04). The alveolar neutrophil count correlated positively with the granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) concentrations in the patient's BALF. Furthermore, neutralizing antibodies (Abs) against GM-CSF and G-CSF significantly inhibited BALF anti-apoptotic activity (15 to 40% and 34 to 63% inhibition, respectively), whereas neutralizing Abs against interleukin (IL)-8, IL-6, IL-1beta and tumor necrosis factor-alpha had no significant effect. In an attempt to identify the cell origin of anti-apoptotic cytokines, we tested in vitro the effect of BAC cells (A549 cell line and primary culture derived from a patient's BAC tumor) on the apoptosis of peripheral blood neutrophils. Cell-free supernatants from tumor cells did not inhibit neutrophil apoptosis. In contrast, cell-free supernatants from tumor cells previously exposed to conditioned media from peripheral blood mononuclear cells and alveolar macrophages significantly inhibited spontaneous neutrophil apoptosis. This inhibition was partially lifted when conditioned media from mononuclear cells were previously treated with Abs against IL-1beta and tumor necrosis factor-alpha. As in vivo, neutralizing Abs against GM-CSF significantly inhibited the anti-apoptotic activity of cell culture supernatants, and combination with Abs against G-CSF had an additive effect. In vivo, GM-CSF and G-CSF were strongly expressed by tumor cells and moderately or not expressed by the normal epithelium, as assessed by immunohistochemical studies. These findings demonstrate that the tumor environment generates local conditions that prolong alveolar neutrophil survival through the production of soluble factors, thereby contributing to the persistence of the neutrophil alveolitis observed in BAC.