The goal of this study was to delineate the transcriptional mechanisms underlying thrombin-mediated induction of vascular adhesion molecule-1 (VCAM-1). Treatment of human umbilical vein endothelial cells with thrombin resulted in a 3.3-fold increase in VCAM-1 promoter activity. The upstream promoter region of VCAM-1 contains a thrombin response element, two nuclear factor kappaB (NF-kappaB) motifs, and a tandem GATA motif. In transient transfection assays, mutation of the thrombin response element had no effect on thrombin induction. In contrast, mutation of either NF-kappaB site resulted in a complete loss of induction, whereas a mutation of the two GATA motifs resulted in a significant reduction in thrombin stimulation. In electrophoretic mobility shift assays, nuclear extracts from thrombin-treated endothelial cells displayed markedly increased binding to the tandem NF-kappaB and GATA motifs. The NF-kappaB complex was supershifted with anti-p65 antibodies, but not with antibodies to RelB, c-Rel, p50, or p52. The GATA complex was supershifted with antibodies to GATA-2, but not GATA-3 or GATA-6. A construct containing tandem copies of the VCAM-1 GATA motifs linked to a minimal thymidine kinase promoter was induced 2.4-fold by thrombin. Taken together, these results suggest that thrombin stimulation of VCAM-1 in endothelial cells is mediated by the coordinate action of NF-kappaB and GATA transcription factors.