Purpose: We hypothesized that tumor uptake and elimination of 2',2'-difluoro-2'-deoxycytidine/2',2'-difluoro-2'-deoxycytidine 5'-triphosphate (dFdCyd/dFdCTP) would be altered after dCK gene transfer and that this change would result in an enhanced cytotoxic effect. To test this hypothesis, we examined dFdCyd/dFdCTP uptake and clearance in HT-29 human colon carcinoma xenografts in nude mice by high-performance liquid chromatography (HPLC) and fluorine-19 magnetic resonance spectroscopy (F-19 MRS).
Experimental design: HT-29 tumors were grown from cells infected with either the retroviral vector alone (LNPO-LacZ) or vector containing the dCK gene (LNPO-dCK). HPLC and F-19 MRS analyses were performed after a single 160 mg/kg i.p. injection of dFdCyd. Tumor response was determined in animals receiving a similar dosing schedule of dFdCyd.
Results: HPLC experiments revealed an increased tumor accumulation of dFdCTP in xenografts overexpressing dCK compared with wild-type controls (P < or = 0.05). dFdCTP in the dCK-infected tumors was easily identified at 24 h postinjection. Conversely, no dFdCTP could be detected in the control xenografts 14 h postinjection. Subsequent F-19 MRS experiments confirmed an altered uptake, revealing a 2.5-fold greater accumulation of dFdCyd/dFdCTP in the dCK xenografts. Whereas a modest tumor growth delay was observed in the wild-type tumors receiving dFdCyd, dCK xenografts demonstrated a marked tumor growth delay following treatment (P < or = 0.05).
Conclusions: These data support the hypothesis that increased expression of dCK cDNA in HT-29 xenografts results in an enhanced dFdCTP accumulation and prolonged elimination kinetics, and ultimately a potentiated in vivo tumor response to dFdCyd. Related to these effects, changes in the overall tumor metabolism of dFdCyd/dFdCTP was detectable by noninvasive F-19 MRS. These data are relevant to future preclinical and clinical studies evaluating dCK gene transfer and dFdCyd therapy.