Background: Plasminogen activator inhibitor type 1 (PAI-1) exerts antifibrinolytic and profibrotic activities. Inside the glomerulus, PAI-1 is mainly synthesized by mesangial cells. We hypothesized that thrombin, via its receptor protease activated receptor type 1 (PAR-1), present on the membrane of glomerular cells, is an important mediator of PAI-1 synthesis.
Methods: Using the technique of Peten et al., we microdissected the glomeruli of 23 kidney transplanted patients admitted in our department from 1993 to 1997, and we followed-up these patients for up to 5 years, with sometimes iterative renal biopsies. With this technique, we also microdissected the glomeruli of three patients who have had a nephrectomy for cancer (control patients). We investigated mRNA expression of the PAI-1, the thrombin receptor PAR-1, the alpha2 chain of type IV (alpha2 IV) collagen, and of a housekeeping gene (cyclophilin) by reverse transcription-polymerase chain reaction. The results were correlated with the renal function and the histological findings classified into acute rejection (9 biopsies), chronic rejection (22 biopsies), or normal (8 biopsies).
Results: A significant up-regulation of PAI-1 and alpha2 IV collagen mRNA was observed in acute rejection (P<0.05) when compared to normal kidneys. A positive correlation exists between alpha2 IV collagen mRNA level and the degree of cellular infiltration. A negative correlation was found between the level of mRNA of PAR-1 and the degree of vascular thrombosis (P=0.005) and glomerulosclerosis (P=0.04). A positive correlation was found between the degradation of renal function and the mRNA level of PAI-1 at the time of the renal biopsy (P<0.05).
Conclusions: These results suggest that glomerular PAI-1 mRNA may be predictive of the long-term renal graft function.