Previously, our laboratory has shown that morphine given by implantation of a 75-mg slow-release pellet for 48 h suppresses murine splenic antibody responses to sheep red blood cells (SRBCs) in a plaque-forming cell (PFC) assay. However, the use of slow-release pellets for such studies is limited, as these pellets are only available in fixed doses and similar pellets for kappa and delta agonists have not been developed. In the present study, we investigated the feasibility of administering opioids via Alzet osmotic minipumps to assess their immunomodulatory effects. Groups of mice received minipumps dispensing morphine sulfate, which has primary activity at the mu opioid receptor; U50,488H, which is a kappa-selective agonist; deltorphin II, which is a delta2-selective agonist; or DPDPE, which has greater selectivity for delta1 than delta, receptors. Morphine, U50,488H and deltorphin II were all immunosuppressive, with biphasic dose-response curves exhibiting maximal (approximately 50%) suppression of the PFC response at doses of 0.5 to 2 mg/kg/day 48 h after pump implantation. Further, immunosuppression by morphine sulfate, U50,488H or deltorphin II was blocked by simultaneous implantation of a minipump administering the opioid receptor-selective antagonists CTAP (1 mg/kg/day), nor-binaltorphimine (5 mg/kg/day), or naltriben (3 mg/kg/day), respectively. DPDPE was inactive at doses lower than 10 mg/kg/day. We conclude that osmotic minipumps are a practical and useful way of administering opioids to study their effects on the immune system, and give further evidence that immunosuppression induced in vivo by opioid agonists is mediated not only via mu, but also via kappa and delta2 opioid receptors.