Mycelial fragmentation in submerged cultures of the cephalosporin C (CPC) producing fungus Acremonium chrysogenum was characterized by image analysis. In both fed-batch and chemostat cultures, the proportion of mycelial clumps seemed to be the most sensitive morphological indicator of fragmentation. In a fed-batch fermentation culture, this declined from roughly 60% at inoculation to less than 10% after 43 h. Subsequent additions of glucose resulted in a sharp increase back to near the initial value, an increase that reversed itself a few hours after glucose exhaustion. Meanwhile CPC production continued to decline steadily. On the other hand, the addition of soybean oil enhanced CPC production, but had no significant effect on the morphology. Although it may sometimes appear that morphology and productivity are related in batch or fed-batch cultures, this study suggests that this is because both respond simultaneously to more fundamental physiological changes, dependent on the availability of carbon. In circumstances, such as supplementary carbon source addition, the relationship is lost. Chemostat cultures supported this belief, as CPC-production rates were hardly affected by the specific growth rate, but the morphology showed significant differences, i.e., lower dilution rates resulted in a lower proportion of clumps and in smaller clumps.