Changes in the K+ current-density of MCF-7 cells during progression through the cell cycle: possible involvement of a h-ether.a-gogo K+ channel

Recept Channels. 2001;7(5):345-56.

Abstract

MCF-7 cells express voltage-activated K+ channels. In the present study, we used the patch-clamp and RT-PCR techniques to investigate the involvement of these channels during the cell cycle progression. The outward rectifier current (IK) recorded during depolarization was almost completely suppressed by the classical K+ channel blocker tetraethylammonium (TEA) in MCF-7 cells. TEA also inhibited cell proliferation, as measured with 3H-thymidine incorporation. Moreover, profound changes were observed in both the resting membrane potential (RMP) and IK during the release from the G0/G1 phase of the cell cycle. MCF-7 cells arrested in G0/G1 were depolarized (-26.3 +/- 10 mV, n = 30) and IK-density was small (9.4 +/- 5.6 pA/pF, n = 60) compared to cells progressing in the G1 phase (RMP = -60 +/- 7.9 mV; n = 35 and IK-density = 30.2 +/- 8.5 pA/pF; n = 76). IK was highly sensitive to Mg2+, astemizole and TEA (10 mM). Extracellular perfusion of 5 mM Mg2+ dramatically slowed the activation and perfusion of 2 microM astemizole inhibited both IK (20 +/- 3%) and cell proliferation (23%). Moreover, the h-EAG mRNA expression was modulated during the cell cycle. Thus, these data suggested that h-EAG K+ channels play a role in controlling the proliferation and/or cell cycle.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Astemizole / pharmacology
  • Biological Transport
  • Breast Neoplasms / metabolism*
  • Cell Cycle / drug effects
  • Electric Conductivity
  • Ether-A-Go-Go Potassium Channels
  • Female
  • G1 Phase / drug effects
  • Growth Inhibitors / pharmacology
  • Humans
  • Membrane Potentials
  • Potassium / metabolism*
  • Potassium Channel Blockers / pharmacology
  • Potassium Channels / metabolism*
  • Resting Phase, Cell Cycle / drug effects
  • Tetraethylammonium / pharmacology
  • Tumor Cells, Cultured

Substances

  • Ether-A-Go-Go Potassium Channels
  • Growth Inhibitors
  • Potassium Channel Blockers
  • Potassium Channels
  • Tetraethylammonium
  • Astemizole
  • Potassium