There is now general agreement that the etiology of proximal and distal colon cancers may differ, thus prompting renewed interest in understanding anatomical site-specific molecular mechanisms of tumor development. Using a 2x2x2 factorial design with male Sprague-Dawley rats (corn oil, fish oil; pectin, cellulose; plus or minus azoxymethane injection) we found a greater than 2-fold difference (P < 0.001) in tumor incidence proximally versus distally (prox/dist ratio: corn oil, 2.25; fish oil, 2.61). The purpose of the present study was to determine if the higher degree of proximal versus distal tumors in our model system could be accounted for by differences between these two sites in initial DNA damage, response to that damage or an effect of diet at one site but not the other. DNA damage was assessed by quantitative immunohistochemistry of O(6)-methylguanine adducts; repair by measurement of O(6)-methylguanine-DNA alkyltransferase and removal was determined by measurement of targeted apoptosis. Although overall initial DNA damage was similar at both sites, in the distal colon there was a greater expression of repair protein (P < 0.001) and a greater degree of targeted apoptosis (P < 0.0001). There was also a reduction in DNA damage in the distal colon of rats consuming fish oil. Together, these results suggest that the lower tumor incidence in the distal colon may be a result of the capacity to deal with initial DNA damage by the distal colon, as compared with the proximal colon. Therefore, the determination of site-specific mechanisms in tumor development is important because distinct strategies may be required to protect against cancer at different sites.