In an investigation of a multiresolution and multistaged approach in functional MRI, the relationship between spatial resolution and detection of functional activation is examined. The difference between functional detection and mapping is defined, and a multiresolution approach to functional detection is analyzed by constructing simple theoretical and experimental models simulating variations of in-plane resolution. Experimentally measured blood oxygenation level-dependent (BOLD) signal changes as well as BOLD contrast-to-noise ratio (CNR) with respect to different spatial resolutions are compared with results from theoretical predictions and simulation. From both an experimental and a theoretical perspective, it is shown that BOLD CNR and, thus, the concomitant detection of the functional activation are maximized when the resolution matches the size of activation.
Copyright 2001 Academic Press.