Poly(ADP-ribosyl)ation is an important mechanism for the maintenance of genomic integrity in response to DNA damage. The enzyme responsible for poly(ADP-ribose) synthesis, poly(ADP-ribose) polymerase 1 (PARP-1), has been implicated in two distinct modes of cell death induced by DNA damage, namely apoptosis and necrosis. During the execution phase of apoptosis, PARP-1 is specifically proteolyzed by caspases to produce an N-terminal DNA-binding domain (DBD) and a C-terminal catalytic fragment. The functional consequence of this proteolytic event is not known. However, it has recently been shown that overactivation of full-length PARP-1 can result in energy depletion and necrosis in dying cells. Here, we investigate the molecular basis for the differential involvement of PARP-1 in these two types of cellular demise. We show that the C-terminal apoptotic fragment of PARP-1 loses its DNA-dependent catalytic activity upon cleavage with caspase 3. However, the N-terminal apoptotic fragment, retains a strong DNA-binding activity and totally inhibits the catalytic activity of uncleaved PARP-1. This dominant-negative behavior was confirmed and extended in cellular extracts where DNA repair was completely inhibited by nanomolar concentrations of the N-terminal fragment. Furthermore, overexpression of the apoptotic DBD in mouse fibroblast inhibits endogenous PARP-1 activity very efficiently in vivo, thereby confirming our biochemical observations. Taken together, these experiments indicate that the apoptotic DBD of PARP-1 acts cooperatively with the proteolytic inactivation of the enzyme to trans-inhibit NAD hydrolysis and to maintain the energy levels of the cell. These results are consistent with a model in which cleavage of PARP-1 promotes apoptosis by preventing DNA repair-induced survival and by blocking energy depletion-induced necrosis.