This paper describes fabrication schemes to create multidimensional polymeric platforms to study cell function. A key feature of these constructs is the replication of in vivo geometry and dimensional size scales that will aid in the understanding of fundamental cell-environment interactions. Advantages of these microtextured membranes include the high degree of reproducibility, optical clarity, and the ability to create multiple features on the micron and sub-micron size scale. We have demonstrated the creation of controlled microscale features on hydrogels as well as biodegradable materials such as poly(lactic-glycolic acid). These microtopographies selectively degrade under physiological conditions. Because of the flexibility of substrate material and the ease of creating micron size structures, this technique can be applied to a multitude of physiological and biological systems.