The phosphatidylinositide 3'-kinase/Akt survival pathway is a target for the anticancer and radiosensitizing agent PKC412, an inhibitor of protein kinase C

Cancer Res. 2001 Nov 15;61(22):8203-10.

Abstract

Activation of the phosphatidylinositol 3'-kinase (PI3K)/Akt survival pathway protects against apoptotic stress stimuli. Therefore, compounds that down-regulate this pathway are of clinical interest for single and combined anticancer treatment modalities. Here we demonstrate that the cytotoxic effect of the protein kinase C (PKC)-inhibitor N-benzoylated staurosporine (PKC412) is mediated via the PI3K/Akt pathway. Dose-dependent down-regulation of the proliferative activity, activation of the apoptotic machinery, and cell killing by PKC412 (0-1 microM) in Rat1a-fibroblasts and H-ras-oncogene-transformed fibroblasts correlated with a decrease of Akt phosphorylation and a reduced phosphorylation of the endogenous Akt-substrate GSK3-alpha. Expression of the dominant-active myristoylated form of Akt abrogated this cytotoxic effect of PKC412. Experiments with Apaf-1-deficient cells revealed that PKC412-induced cytotoxicity depends on an intact apoptosome but that the decrease of Akt phosphorylation is not attributable to apoptosis execution. Comparative experiments indicate that PKC412 and the parent-compound staurosporine down-regulate this survival pathway upstream or at the level of Akt but by a different mechanism than the PI3K-inhibitor LY294002. Furthermore, inhibition of this pathway by PKC412 is relevant for sensitization to ionizing radiation. These results demonstrate the specific role of this signaling pathway for the PKC412-mediated down-regulation of an apoptotic threshold and its cytotoxicity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Transformed
  • Cell Transformation, Neoplastic / genetics
  • Chromones / pharmacology
  • Down-Regulation / drug effects
  • Enzyme Inhibitors / pharmacology*
  • Genes, ras / physiology
  • Humans
  • Morpholines / pharmacology
  • Phosphatidylinositol 3-Kinases / metabolism
  • Phosphatidylinositol 3-Kinases / physiology*
  • Phosphoinositide-3 Kinase Inhibitors
  • Phosphorylation / drug effects
  • Protein Kinase C / antagonists & inhibitors*
  • Protein Serine-Threonine Kinases*
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins / physiology*
  • Proto-Oncogene Proteins c-akt
  • Rats
  • Signal Transduction / drug effects*
  • Signal Transduction / physiology
  • Staurosporine / analogs & derivatives*
  • Staurosporine / pharmacology*
  • Tumor Cells, Cultured

Substances

  • Chromones
  • Enzyme Inhibitors
  • Morpholines
  • Phosphoinositide-3 Kinase Inhibitors
  • Proto-Oncogene Proteins
  • 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one
  • AKT1 protein, human
  • Akt1 protein, rat
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • Protein Kinase C
  • Staurosporine
  • midostaurin