We discuss a theoretical model for the cooperative binding dynamics of tropomyosin to actin filaments. Tropomyosin binds to actin by occupying seven consecutive monomers. The model includes a strong attraction between attached tropomyosin molecules. We start with an empty lattice and show that the binding goes through several stages. The first stage represents fast initial binding and leaves many small vacancies between blocks of bound molecules. In the second stage the vacancies annihilate slowly as tropomyosin molecules detach and reattach. Finally, the system approaches equilibrium. Using a grain-growth model and a diffusion-coagulation model we give analytical approximations for the vacancy density in all regimes.