The S100 family proteins MRP-8 (S100A8) and MRP-14 (S100A9) form a heterodimer that is abundantly expressed in neutrophils, monocytes, and some secretory epithelia. In inflamed tissues, the MRP-8/14 complex is deposited onto the endothelium of venules associated with extravasating leukocytes. To explore the receptor interactions of MRP-8/14, we use a model system in which the purified MRP-8/14 complex binds to the cell surface of an endothelial cell line, HMEC-1. This interaction is mediated by the MRP-14 subunit and is mirrored by recombinant MRP-14 alone. The cell surface binding of MRP-14 was blocked by heparin, heparan sulfate, and chondroitin sulfate B, and the binding sites were sensitive to heparinase I and trypsin treatment but not to chondroitinase ABC. Furthermore MRP-8/14 and MRP-14 did not bind to a glycosaminoglycan-minus cell line. MRP-14 has a high affinity for heparin (K(d) = 6.1 +/- 3.4 nm), and this interaction mimicked that with the endothelial cells. We therefore conclude that the MRP-8/14 complex binds to endothelial cells via the MRP-14 subunit interacting chiefly with heparan sulfate proteoglycans. CD36 and RAGE, two other putative receptors for MRP-8/14, were not expressed by HMEC-1 cells. This binding activity may explain the immobilization of the MRP-8/14 complex on endothelium that is observed in vivo.