Characterization of hK4 (prostase), a prostate-specific serine protease: activation of the precursor of prostate specific antigen (pro-PSA) and single-chain urokinase-type plasminogen activator and degradation of prostatic acid phosphatase

Biochemistry. 2001 Dec 18;40(50):15341-8. doi: 10.1021/bi015775e.

Abstract

hK4 (prostase, KLK4), a recently cloned prostate-specific serine protease and a member of the tissue kallikrein family, is a zymogen composed of 228 amino acid residues including an amino-terminal propiece, Ser-Cys-Ser-Gln-. A chimeric form of hK4 (ch-hK4) was constructed in which the propiece of hK4 was replaced by that of prostate-specific antigen (PSA) to create an activation site susceptible to trypsin-type proteases. ch-hK4 was expressed in Escherichia coli, isolated from inclusion bodies, refolded, and purified with an overall yield of 25%. The zymogen was readily self-activated during the refolding process to generate an active form (21 kDa) of hK4 (rhK4). rhK4 cleaved the chromogenic substrates Val-Leu-Arg-pNA (S-2266), Pro-Phe-Arg-pNA (S-2302), Ile-Glu-Gly-Arg-pNA (S-2222), and Val-Leu-Lys-pNA (S-2251), indicating that rhK4 has a trypsin-type substrate specificity. The rhK4 was inhibited by aprotinin (6 kDa), forming an equimolar 27 kDa complex. rhK4 readily activated both the precursor of PSA (pro-PSA) and single chain urokinase-type plasminogen activator (scuPA, pro-uPA). rhK4 also completely degraded prostatic acid phosphatase but failed to cleave serum albumin, another protein purified from human seminal plasma. These results indicate that hK4 may have a role in the physiologic processing of seminal plasma proteins such as pro-PSA, as well as in the pathogenesis of prostate cancer through its activation of pro-uPA.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acid Phosphatase
  • Amino Acid Sequence
  • Binding Sites
  • Humans
  • Hydrogen-Ion Concentration
  • Kallikreins*
  • Male
  • Prostate / enzymology*
  • Prostate-Specific Antigen / metabolism*
  • Prostatic Neoplasms / enzymology
  • Prostatic Neoplasms / etiology
  • Protein Precursors / metabolism*
  • Protein Tyrosine Phosphatases / metabolism*
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Seminal Plasma Proteins / metabolism
  • Serine Endopeptidases / chemistry*
  • Serine Endopeptidases / genetics
  • Serine Endopeptidases / metabolism*
  • Substrate Specificity
  • Urokinase-Type Plasminogen Activator / metabolism*

Substances

  • Protein Precursors
  • Recombinant Proteins
  • Seminal Plasma Proteins
  • Acid Phosphatase
  • prostatic acid phosphatase
  • Protein Tyrosine Phosphatases
  • Kallikreins
  • Serine Endopeptidases
  • kallikrein 4
  • Urokinase-Type Plasminogen Activator
  • Prostate-Specific Antigen