17beta-estradiol inhibits soluble guanylate cyclase activity through a protein tyrosine phosphatase in PC12 cells

J Steroid Biochem Mol Biol. 2001 Nov;78(5):451-8. doi: 10.1016/s0960-0760(01)00122-4.

Abstract

Besides its involvement in reproductive functions, estrogen protects against the development of cardiovascular diseases. The guanylate cyclase/cGMP system is known to exert potent effects on the regulation of blood pressure and electrolyte balance. We examined whether 17beta-estradiol can affect soluble guanylate cyclase in PC12 cells. The results indicate that 17beta-estradiol decreases cGMP levels in PC12 cells. 17beta-Estradiol decreases sodium nitroprusside (SNP)-stimulated, but not atrial natriuretic factor-stimulated cGMP formation in PC12 cells, indicating that 17beta-estradiol decreases cGMP levels by inhibiting the activity of soluble guanylate cyclase. 17beta-Estradiol also stimulates protein tyrosine phosphatase activities in PC12 cells and dephosphorylates at least three proteins. Addition of sodium vanadate, a protein tyrosine phosphatase inhibitor, blocks the inhibitory effects of 17beta-estradiol on soluble guanylate cyclase activity in PC12 cells. Furthermore, transfection of SHP-1, a protein tyrosine phosphatase, into PC12 cells inhibits both basal and SNP-stimulated guanylate cyclase activity. Amino acid analysis also reveals that the 70-kDa subunit of soluble guanylate cyclase contains the SHP-1 substrate consensus sequence. These results suggest that 17beta-estradiol inhibits soluble guanylate cyclase activity through SHP-1.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Enzyme Inhibitors / pharmacology
  • Estradiol / pharmacology*
  • Guanylate Cyclase / antagonists & inhibitors*
  • Guanylate Cyclase / genetics
  • Intracellular Signaling Peptides and Proteins
  • Nitroprusside / pharmacology
  • PC12 Cells
  • Protein Tyrosine Phosphatase, Non-Receptor Type 11
  • Protein Tyrosine Phosphatase, Non-Receptor Type 6
  • Protein Tyrosine Phosphatases / antagonists & inhibitors
  • Protein Tyrosine Phosphatases / genetics
  • Protein Tyrosine Phosphatases / metabolism*
  • Rats
  • Solubility
  • Transfection
  • Vanadates / pharmacology

Substances

  • Enzyme Inhibitors
  • Intracellular Signaling Peptides and Proteins
  • Nitroprusside
  • Vanadates
  • Estradiol
  • Protein Tyrosine Phosphatase, Non-Receptor Type 11
  • Protein Tyrosine Phosphatase, Non-Receptor Type 6
  • Protein Tyrosine Phosphatases
  • Ptpn11 protein, rat
  • Ptpn6 protein, rat
  • Guanylate Cyclase