Cholecystokinin (CCK) and gastrin (G) and their receptors (CCK1 and CCK2) are involved in multiple physiological functions. Notably, CCK1R plays a role in the regulation of food intake whereas both CCK1R and CCK2R play a role in the regulation of pancreatic endocrine function. CCK1R and CCK2R may therefore serve as pharmacological targets in diabetes and obesity and genes encoding these receptors may be candidate genes in the pathogenesis of the diseases. In this study, we used single nucleotide polymorphism analysis and allele specific amplification for mutation screening of the CCK2 receptor gene and family linkage study. Mutated receptors were constructed, expressed in COS-7 cells for analysis of their binding and functional properties. V125I-CCK2 receptor variant was found in 2 out of 18 type 2 diabetes mellitus families tested. V125I mutation co-segregated in those 2 initial families, but further association studies showed that this mutation was not associated with diabetes or early age at diagnosis of the disease. V125I-CCK2 receptor high affinity sites exhibited a 2-fold enhanced binding affinity for CCK which was correlated to a slightly increased potency in coupling to inositol phosphate production. Since CCK2 receptor is expressed in pancreatic glucagon-producing cells in humans and is involved in secretion of glucagon, an increase of binding affinity of the mutated CCK2 receptor could enhance glucagon secretion in patients bearing V125I mutation. We also characterized a mutant of the CCK1 receptor which was previously identified in an obese patient. This mutant, V365I-CCK1, demonstrated a decreased level of expression (26%) and efficacy (25%) to stimulate inositol phosphates. It can therefore be expected that in humans bearing V365I mutation, decreases in CCK1 receptor expression and coupling efficiency may affect CCK-induced regulation of satiety. Polymorphism or mutations in the CCK receptors may be involved in type 2 diabetes mellitus and obesity. However, further studies are necessary to precisely evaluate this role in humans.