A new family of antimicrobial peptides was isolated from the venom of Cupiennius salei. The peptides were purified to homogeneity, and the sequence of cupiennin 1a was determined by Edman degradation: GFGALFKFLAKKVAKTVAKQAAKQGAKYVVNKQME-NH(2). The amino acid sequences of cupiennin 1b, c, and d were obtained by a combination of sequence analysis and mass spectrometric measurements of comparative tryptic peptide mapping. All peptides consist of 35 amino acid residues and are characterized by a more hydrophobic N-terminal chain region and a C terminus composed preferentially of polar and charged residues. The total charge of all cupiennins calculated under physiological conditions is +8, and their C terminus, formed by a glutamic acid residue, is amidated. Conformational studies of the peptides revealed a high helix forming potential. Antimicrobial assays on bacteria with cupiennin 1a, 1d, and synthesized cupiennins 1a* and 1d* showed minimal inhibitory concentrations for bacteria in the submicromolar range. Their lytic effect on human red blood cells was lower by a factor of 8 to 14 than the highly hemolytic melittin. Cupiennin 1a, 1b, 1d, 1a*, and 1d* showed pronounced insecticidal activity. The immediate biological effects and the structural properties of the isolated cupiennins indicate a membrane-destroying mode of action on prokaryotic as well as eukaryotic cells.