Arterial and airway chemoreceptors respond to acute hypoxia by depolarizing, thereby activating voltage-gated Ca2+ channels and so permitting Ca2+ entry to trigger transmitter release. Following periods of prolonged hypoxia, these cells undergo a form of remodelling which involves altered expression of ion channels. Here, we use microspectrofluorimetric recordings of voltage-gated Ca2+ entry (activated by exposure of cells to 50 mM K+) to show that chronic hypoxia suppresses such Ca2+ entry in model airway chemoreceptor (H146) cells. Furthermore, Ca2+ entry via L-type channels is suppressed, whilst entry via N-type channels is greatly enhanced. The suppressed response, together with dramatic remodelling of routes available for voltage-gated Ca2+ entry, is likely to alter significantly the acute O2 sensing properties of these cells.