The G protein-coupled receptor encoded by Kaposi's sarcoma-associated herpesvirus, also referred to as ORF74, has been shown to stimulate oncogenic and angiogenic signaling pathways in a constitutively active manner. The biochemical routes linking ORF74 to these signaling pathways are poorly defined. In this study, we show that ORF74 constitutively activates p44/p42 mitogen-activated protein kinase (MAPK) and Akt via G(i)- and phospholipase C (PLC)-mediated signaling pathways. Activation of Akt by ORF74 appears to be phosphatidylinositol 3-kinase (PI3-K) dependent but, interestingly, is also mediated by activation of protein kinase C (PKC) and p44/p42 MAPK. ORF74 may signal to Akt via p44/p42 MAPK, which can be activated by G(i), through activation of PI3-K or through PKC via the PLC pathway. Signaling of ORF74 to these proliferative and antiapoptotic signaling pathways can be further modulated positively by growth-related oncogene (GROalpha/CXCL1) and negatively by human gamma interferon-inducible protein 10 (IP-10/CXCL10), thus acting as an agonist and an inverse agonist, respectively. Despite the ability of the cytomegalovirus-encoded chemokine receptor US28 to constitutively activate PLC, this receptor does not increase phosphorylation of p44/p42 MAPK or Akt in COS-7 cells. Hence, ORF74 appears to signal through a larger diversity of G proteins than US28, allowing it to couple to proliferative and antiapoptotic signaling pathways. ORF74 can therefore be envisioned as an attractive target for novel treatment of Kaposi's sarcoma.