Effects of enrichment of fibroblasts with unesterified cholesterol on the efflux of cellular lipids to apolipoprotein A-I

J Biol Chem. 2002 Apr 5;277(14):11811-20. doi: 10.1074/jbc.M108268200. Epub 2002 Jan 22.

Abstract

This study elucidates the factors underlying the enhancement in efflux of human fibroblast unesterified cholesterol and phospholipid (PL) by lipid-free apolipoprotein (apo) A-I that is induced by cholesterol enrichment of the cells. Doubling the unesterified cholesterol content of the plasma membrane by incubation for 24 h with low density lipoprotein and lipid/cholesterol dispersions increases the pools of PL and cholesterol available for removal by apoA-I from about 0.8-5%; the initial rates of mass release of cholesterol and PL are both increased about 6-fold. Expression of the ATP binding cassette transporter A1 (ABCA1) is critical for this increased efflux of lipids, and cholesterol loading of the fibroblasts over 24 h increases ABCA1 mRNA about 12-fold. The presence of more ABCA1 and cholesterol in the plasma membrane results in a 2-fold increase in the level of specific binding of apoA-I to the cells with no change in binding affinity. Characterization of the species released from either control or cholesterol-enriched cells indicates that the plasma membrane domains from which lipids are removed are cholesterol-enriched with respect to the average plasma membrane composition. Cholesterol enrichment of fibroblasts also affects PL synthesis, and this leads to enhanced release of phosphatidylcholine (PC) relative to sphingomyelin (SM); the ratios of PC to SM solubilized from control and cholesterol-enriched fibroblasts are approximately 2/1 and 5/1, respectively. Biosynthesis of PC is critical for this preferential release of PC and the enhanced cholesterol efflux because inhibition of PC synthesis by choline depletion reduces cholesterol efflux from cholesterol-enriched cells. Overall, it is clear that enrichment of fibroblasts with unesterified cholesterol enhances efflux of cholesterol and PL to apoA-I because of three effects, 1) increased PC biosynthesis, 2) increased PC transport via ABCA1, and 3) increased cholesterol in the plasma membrane.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • ATP Binding Cassette Transporter 1
  • ATP-Binding Cassette Transporters / metabolism
  • Apolipoprotein A-I / metabolism*
  • Biological Transport
  • Cell Membrane / metabolism
  • Cholesterol / pharmacology*
  • Choline / metabolism
  • Cyclic AMP / metabolism
  • Dose-Response Relationship, Drug
  • Fibroblasts / metabolism*
  • Humans
  • Kinetics
  • Lipid Metabolism*
  • Models, Chemical
  • Phospholipids / metabolism
  • Protein Binding
  • RNA, Messenger / metabolism
  • Time Factors
  • Up-Regulation

Substances

  • ABCA1 protein, human
  • ATP Binding Cassette Transporter 1
  • ATP-Binding Cassette Transporters
  • Apolipoprotein A-I
  • Phospholipids
  • RNA, Messenger
  • Cholesterol
  • Cyclic AMP
  • Choline