Retinal neovascularization is a major cause of blindness and requires the activities of several signaling pathways and multiple cytokines. Activation of protein kinase C (PKC) enhances the angiogenic process and is involved in the signaling of vascular endothelial growth factor (VEGF). We have demonstrated a dramatic increase in the angiogenic response to oxygen-induced retinal ischemia in transgenic mice overexpressing PKC beta 2 isoform and a significant decrease in retinal neovascularization in PKC beta isoform null mice. The mitogenic action of VEGF, a potent hypoxia-induced angiogenic factor, was increased by 2-fold in retinal endothelial cells by the overexpression of PKC beta 1 or beta 2 isoforms and inhibited significantly by the overexpression of a dominant-negative PKC beta 2 isoform but not by the expression of PKC alpha, delta, and zeta isoforms. Association of PKC beta 2 isoform with retinoblastoma protein was discovered in retinal endothelial cells, and PKC beta 2 isoform increased retinoblastoma phosphorylation under basal and VEGF-stimulated conditions. The potential functional consequences of PKC beta-induced retinoblastoma phosphorylation could include enhanced E2 promoter binding factor transcriptional activity and increased VEGF-induced endothelial cell proliferation.