Androgens are known to affect cognitive and mnemonic aspects of spatial processing. The cholinergic system is thought to play an important role in cognition and memory, but little is known about the interaction between androgen and cholinergic neurons. The present study focused on the effects of testosterone on the cholinergic neurons in the anterior cingulate cortex, the posterior parietal cortex, the hippocampus, and the basal forebrain including the medial septum, i.e., regions related to spatial processing. We examined choline acetyltransferase (ChAT) immunoreactivity in three groups of adult male rats: sham-operated (Sham), 28-day gonadectomized (GDX), and 28-day gonadectomized with immediate implantation of testosterone propionate (GDX+TP). Comparison of the Sham and GDX+TP groups demonstrated that the GDX group had significantly decreased cell counts of ChAT-immunoreactive neurons in anterior cingulate cortex layer II/III, posterior parietal cortex layer II/III, and the medial septum, but not in the other basal forebrain subregions examined (the horizontal part of the diagonal band of Broca and the substantia innominata). The GDX group also had significantly reduced hippocampal ChAT-immunoreactive fiber pixel density. The GDX+TP group maintained ChAT-immunoreactive cell counts in the anterior cingulate cortex, posterior parietal cortex, and medial septum equivalent to those in the Sham group. Less than 1% of identified cells showed colocalization of immunoreactivity for ChAT and androgen receptor in the cell bodies of the cortex and basal forebrain. Our observations demonstrate that the presence or absence of testosterone for 4 weeks influenced the cholinergic population region-specifically in the adult rat brain.