Role of D1-like receptors in amphetamine-induced behavioral sensitization: a study using D1A receptor knockout mice

Psychopharmacology (Berl). 2002 Feb;159(4):407-14. doi: 10.1007/s00213-001-0936-7. Epub 2001 Nov 20.

Abstract

Rationale: The role played by D(1)-like receptors in amphetamine-induced behavioral sensitization has been examined using both the D(1)-like receptor antagonist, SCH 23390, and the D(1A) receptor knockout mouse (i.e. D(1A)-deficient mice). Studies using these two approaches have provided conflicting evidence about the importance of D(1)-like receptors for amphetamine-induced behavioral sensitization.

Objective: The purpose of the present study was to determine: (a) whether D(1A)-deficient mice exhibit amphetamine-induced locomotor sensitization after 3 and 17 drug abstinence days, and (b) whether SCH 23390, which binds to both D(1A) and D(1B) receptor subtypes, blocks development of amphetamine sensitization in wild-type and D(1A)-deficient mice.

Methods: In the first experiment, adult wild-type and D(1A)-deficient mice were injected with amphetamine (0, 1, 2, 4, or 8 mg/kg, IP) for 7 consecutive days. In the second experiment, wild-type and D(1A)-deficient mice were pretreated with SCH 23390 (0, 0.15, or 0.5 mg/kg, IP) 30 min prior to being injected with amphetamine (0 or 8 mg/kg, IP). After each daily amphetamine injection, mice were placed in activity chambers where distance traveled (i.e. horizontal locomotor activity) was measured for 60 min. On the test days, which occurred after 3 or 17 drug abstinence days, mice were injected with 1 mg/kg amphetamine and locomotion was measured for 120 min.

Results: Both wild-type and D(1A)-deficient mice exhibited amphetamine-induced locomotor sensitization. Pretreatment with 0.5 mg/kg SCH 23390 blocked the development of locomotor sensitization in wild-type mice, but did not alter the sensitized responding of D(1A)-deficient mice.

Conclusions: It appears that D(1)-like receptors are necessary for the development of amphetamine sensitization in wild-type mice, while neither the D(1A) nor D(1B) receptor subtypes are necessary for the amphetamine-induced locomotor sensitization of D(1A)-deficient mice. A possible explanation for these conflicting results is that D(1A)-deficient mice may have a compensatory mechanism (not involving D(1B) receptors) that allows them to exhibit amphetamine-induced behavioral sensitization in the absence of the D(1A) receptor.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amphetamine / pharmacology*
  • Animals
  • Benzazepines / pharmacology
  • Dopamine Agents / pharmacology*
  • Dopamine Antagonists / pharmacology
  • Female
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Motor Activity / drug effects*
  • Motor Activity / physiology
  • Receptors, Dopamine D1 / antagonists & inhibitors
  • Receptors, Dopamine D1 / deficiency*
  • Receptors, Dopamine D1 / genetics
  • Receptors, Dopamine D1 / physiology

Substances

  • Benzazepines
  • Dopamine Agents
  • Dopamine Antagonists
  • Receptors, Dopamine D1
  • dopamine D1A receptor
  • Amphetamine