Metal-template-directed synthesis of diphosphorus compounds through intramolecular phosphinidene additions

Chemistry. 2002 Jan 4;8(1):58-65. doi: 10.1002/1521-3765(20020104)8:1<58::aid-chem58>3.0.co;2-5.

Abstract

Heating the nonchelating cis-bis-7-phosphanorbornadiene-[Mo(CO)4] complex (13) results in the thermal decomposition of one of the 7-phosphanorbornadiene groups. The phosphinidene thus generated adds intramolecularly to a C=C bond of the other ligand to give the novel diphosphorus complex 14. This reaction constitutes a metal-template-directed synthesis. Likewise, the intramolecular phosphinidene addition to the C=C bond of a Mo-phospholene ligand affords the diphos complex 18. Its crystal structure exhibits an extremely small P-Mo-P bite-angle for a five-membered chelate ring. The similar intramolecular 1,2-addition to a C=C bond of a phosphole ligand gives a highly strained, unstable intermediate product. Scission of its P-Mo bond generates a free coordination site, which is then occupied by either CO or a phosphole to yield complexes 22 and 23, respectively. The analogous intermolecular addition of [PhPW(CO)5] to a [phosphole-W(CO)5] complex gives the di-[W(CO)5] complexed adduct 28. The directing effect of the metal on the intra- and intermolecular additions is discussed.