Background: The physiological effects of ACE inhibitors may act in part through a kinin-dependent mechanism. We investigated the effect of chronic ACE-inhibitor treatment on functional kinin B(1)- and B(2)-receptor expression, which are the molecular entities responsible for the biological effects of kinins.
Methods and results: Rats were subjected to different 6-week treatments using various mixtures of the following agents: ACE inhibitor, angiotensin AT(1)-receptor antagonist, and B(1)- and B(2)-receptor antagonists. Chronic ACE inhibition induced both renal and vascular B(1)-receptor expression, whereas B(2)-receptor expression was not modified. Furthermore, with B(1)-receptor antagonists, it was shown that B(1)-receptor induction was involved in the hypotensive effect of ACE inhibition. Using microdissection, we prepared 10 different nephron segments and found ACE-inhibitor-induced expression of functional B(1)-receptors in all segments. ACE-inhibitor-induced B(1)-receptor induction involved homologous upregulation, because it was prevented by B(1)-receptor antagonist treatment. Finally, using B(2)-receptor knockout mice, we showed that ACE-inhibitor-induced B(1)-receptor expression was B(2)-receptor independent.
Conclusions: This study provides the first evidence that chronic ACE-inhibitor administration is associated with functional vascular and renal B(1)-receptor induction, which is involved in ACE-inhibitor-induced hypotension. The observed B(1)-receptor induction in the kidney might participate in the known renoprotective effects of ACE inhibition.