1alpha,25-(OH)(2)-D(3) and its synthetic analogue decrease tumor load in the Apc(min) Mouse

Cancer Res. 2002 Feb 1;62(3):741-6.

Abstract

Both calcium and vitamin D are thought to be able to inhibit colon carcinogenesis. To better define the effects of vitamin D, we studied 1alpha,25-(OH)(2)-D(3) and a noncalcemic synthetic analogue of vitamin D(3) (VD(3)) in the Apc(min) mouse. Female Apc(min) mice 4-5 weeks old were randomized to four groups: a VD(3)-treated group (n = 11) were given injections of 0.01 microg of 1alpha,25-(OH)(2)-D(3) i.p. three times per week; an analogue-treated group (n = 10) received 5 microg of 1alpha,25-(OH)(2)-16-ene-19-nor-24-oxo-D(3) i.p. three times per week; and a control group (n = 12) received sham injections of PBS. A sulindac-treated group (n = 10) was used as a positive control. Doses of these compounds were chosen based on previous toxicity studies in mice and rats. After 10 weeks of treatment, mice were killed and two observers (S. H., R. W. I.), blinded to treatment, scored polyp number and size. Tumor number was not affected with 1alpha,25-(OH)(2)-D(3) or vitamin D analogue administration. A significant decrease in total tumor load (sum of all polyp areas) over the entire gastrointestinal tract was seen in the analogue (36% decrease; P < 0.05) and the VD(3) groups (46%; P < 0.001). There was a significant decrease in polyp number (49%; P < 0.001) and polyp area (70%; P < 0.001) in the sulindac group. Reverse transcription-PCR of the total RNA derived from intestinal tissue revealed expression of the vitamin D receptor throughout the small intestine and the colon. Serum calcium levels in the analogue group were not elevated at week 4 of treatment and only moderately elevated (22%) by week 8 (P < or =0.001). In contrast, serum calcium in the VD(3) group was significantly elevated (P < or =0.001) at weeks 4 (23%) and 8 (45%). Food intake and growth rate were significantly lower in the VD(3) group (26%, P < 0.001, and 27%, P < 0.001, respectively) at week 10. In contrast, food intake and growth rate were similar for the control, sulindac, and analogue groups. Our results indicate that a noncalcemic analogue of vitamin D can significantly decrease intestinal tumor load in Apc(min) mice without severe toxic side effects and suggest that these compounds may have utility as chemopreventive agents in groups at high-risk for colon cancer.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenomatous Polyposis Coli / genetics
  • Adenomatous Polyposis Coli / metabolism
  • Adenomatous Polyposis Coli / pathology
  • Adenomatous Polyposis Coli / prevention & control
  • Animals
  • Body Weight / drug effects
  • Calcitriol / analogs & derivatives
  • Calcitriol / pharmacology*
  • Calcium / blood
  • Cholecalciferol / analogs & derivatives
  • Cholecalciferol / pharmacology*
  • Colonic Neoplasms / metabolism
  • Colonic Neoplasms / pathology
  • Colonic Neoplasms / prevention & control*
  • Eating / drug effects
  • Female
  • Mice
  • Mice, Inbred C57BL
  • Receptors, Calcitriol / biosynthesis

Substances

  • 1,15-dihydroxy-16-ene-19-nor-24-oxovitamin D3
  • Receptors, Calcitriol
  • Cholecalciferol
  • Calcitriol
  • Calcium