Cyclins are cell cycle regulatory proteins. We compared the concurrent kinetics of apoptosis and cyclin expression between HIV-infected cells (J1.1), and uninfected Jurkat cells. Cells were cultured with TNF-alpha and harvested at 24, 48 and 72 hr to examine cyclin expression and DNA content. We found a decline in the levels of the mitotic B cyclin in Jurkat cells (16 to 2%, 48 hr), while in J1.1 cells it was observed in cyclin E (60 to 37%, 72 hr). Because cyclin B is mitotic, results suggest that Jurkat cells undergo apoptosis at G2, while J1.1 cells enter mitosis and then die by apoptosis, as no changes in cyclin B or DNA content at G2M were observed. G1 cyclin E decline in J1.1 cells also suggests that they die after entering mitosis. Based on differences in the cyclins involved, it seems that HIV-1 manipulates the cell cycle to protect J1.1 cells from apoptosis induction at G2, a critical cell cycle phase for HIV replication. Thus, cyclins are useful to characterize points in the cell cycle at which apoptosis is induced, and could become excellent tools to evaluate mechanisms of action of antiretroviral drugs in the cell cycle of HIV-infected cells.