Primary human immunodeficiency virus type 2 (HIV-2) isolates are characterized by their ability to use a broad range of coreceptors, including CCR5, CXCR4, and several alternative coreceptors. However, the in vivo relevance of this in vitro promiscuity in coreceptor usage remains unclear. We set out to evaluate the relative importance of CCR5 and CXCR4 for infection of activated peripheral blood mononuclear cells (PBMC). PBMC from donors homozygous for wild-type CCR5 (CCR5(+/+) or CCR5Delta32 (CCR5(-/-)) were tested for their susceptibility to infection with 10 primary HIV-2 isolates with known coreceptor usage by parallel 50% tissue culture infectious dose (TCID50) titrations. Although all isolates, except one, were able to establish productive infection in CCR5(-/-) PBMC, the infection of these cells was inefficient for all isolates that were unable to use CXCR4. For CXCR4-using isolates there were only minor differences in TCID50 between CCR5(+/+) and CCR5(-/-) PBMC. When we compared the replication kinetics in PBMC from donors of the two genotypes we observed an average delay in replication onset of 9 days in the CCR5(-/-) PBMC. This study shows that HIV-2 can use alternative coreceptors for infection of PBMC, but that this infection is much less efficient than infection mediated by CCR5 or CXCR4. Thus, CCR5 and CXCR4 appear to be the major coreceptors for HIV-2 infection of PBMC.